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Abstract

We present Slonana, a production-grade implementation of a Solana-compatible Layer 1 blockchain
optimized for autonomous agent economies. Unlike general-purpose blockchains, Slonana is purpose-
built for machine-to-machine transactions at scale: community-first launch (10% airdrop to $slo-
nana memecoin holders; 90% via staking rewards), governed entirely by the community. Current
implementation achieves measured throughput of 185K TPS with 142us median operation latency;
architectural design targets 1.2M+ TPS through lock-free algorithms and NUMA-aware data struc-
tures, with scaling validated via theoretical analysis and partial implementation. Uniquely, every
on-chain program implements Model Context Protocol (MCP) interfaces, enabling agents to dis-
cover program capabilities at runtime and execute autonomously without pre-programming.

This paper makes contributions at three levels:

Architecture and implementation. We present a full C++20 implementation of Tower BFT
consensus integrated with Proof of History for cryptographic ordering. Measured performance:
185K TPS sustained throughput with 142us median operation latency on testnet. Architectural
design through lock-free algorithms, NUMA-aware data structures, and agent-optimized transaction
batching targets 1.2M+ TPS; full validation pending single-chain stress testing at scale.

Game-theoretic foundations. We analyze Tower BFT security under stake-weighted Byzan-
tine adversaries with o < 1/3 combined stake. We prove that slashing penalties exceeding stake
gains deter all profitable deviations. We characterize attack costs showing that consensus attacks
require > $1B in coordinated stake with negative expected value due to reputation loss and slashing.

Fair-launch economics. We demonstrate empirically that community-owned networks avoid
VC-driven centralization. Agent-based simulations show Gini coefficient converging from 0.88
(launch) to 0.47 within 48 months under Zipf-distributed validator participation, compared to
0.90 for stake-concentrated networks.

This paper documents both proven implementations and research directions: the consensus
mechanism is battle-tested; the economic models are validated through simulation; the agent econ-
omy optimizations remain an open research area. We are explicit about the gap between theory
and engineering: cryptographic proofs are rigorous, but distributed systems have failure modes
beyond analysis.
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Agents, Solana Virtual Machine, Game Theory, Community Governance, Lock-Free Algorithms,
High-Performance Consensus
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1 Introduction

1.1 The Thesis

When Satoshi Nakamoto launched Bitcoin in 2009, its creators faced a fundamental question: how
do you coordinate a distributed ledger without trusted authorities? Their answer—Proof-of-Work
consensus via SHA-256 mining—was elegant, secure, and consequential. It achieved unprecedented
decentralization through global mining participation. But it also locked in assumptions: that
energy consumption scaled linearly with security, that 7 transactions per second sufficed, and that
base-layer scalability was impossible.

Ethereum improved programmability but inherited Bitcoin’s scalability limits. Solana achieved
65,000 TPS through architectural innovations but concentrated power among professional valida-
tors. The blockchain trilemma-decentralization, security, scalability—appeared fundamental [3].

Here lies the problem: no existing blockchain optimizes for autonomous agent economies.
A future with millions of Al agents transacting thousands of times daily requires:

e Fair launch: No pre-mine or VC allocation that concentrates governance

e Global decentralization: Thousands of independent operators preventing censorship

e Elastic throughput: Scale from 1K TPS baseline to 100M+ TPS during demand spikes
e Economic security: Attack costs exceed profits under all adversarial models

This paper advances a thesis grounded in engineering reality: Tower BFT consensus on
high-performance hardware provides the security, fairness, and scalability autonomous
agents require. Rather than theoretical perfection, we prioritize practical systems: fair-launched
with no VC allocation, governed by community voting. Current measured throughput is 185K
TPS with 142us operation latency; architectural design targets 1.2M+ TPS through lock-free algo-
rithms and NUMA-aware data structures, validated via theoretical analysis and component-level
benchmarking.

Our approach differs from pure PoW or PoS networks in three concrete ways:

1. Community-first launch: 10% of tokens to existing $slonana community via airdrop (1
$slon = 10 $slonana); 90% distributed via validator staking rewards

2. Community governance: All protocol parameters controlled by stake-weighted voting

3. Agent-optimized design: Transaction batching, latency priorities, and payment primitives
for autonomous systems

This is not a claim that our design is optimal. Rather, we document what works in practice
and where research gaps remain.

1.2 Why Now: The Agentic Economy

Our interest in hybrid consensus is motivated by the emergence of Autonomous Economic Agents
(AEAs) as dominant blockchain users. Consider a future—perhaps nearer than expected—where
millions of Al agents operate continuously, making thousands of economic decisions daily.

An agent monitoring DeF'i yields might rebalance portfolios hourly. A content-generation agent
might pay for compute resources every few seconds. A trading agent might execute arbitrage across
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dozens of venues in milliseconds. These agents don’t sleep, don’t take weekends, and don’t wait for
governance proposals.

They operate at machine speed and need infrastructure that operates at machine speed. But
they also need fairness: if early adopters pre-mine 80% of supply or VCs control validator sets,
agents cannot trust the system’s neutrality.

1.3 The Centralization Problem in VC-Backed Networks

Modern PoS networks exhibit dangerous centralization due to initial token allocation. As of January
2026:

e Ethereum: Top 5 entities control 64% of stake (Lido, Coinbase, Binance, Kraken, Rocket-
Pool)

e Solana: Nakamoto coefficient of 19; 19 validators can halt the network
e Cardano: IOHK and Emurgo collectively control >40% via delegation

This centralization stems from pre-mine and VC allocation. Teams distribute tokens to early
investors, creating permanent wealth asymmetry. Staking rewards compound this: richer validators
earn more absolute tokens, widening gaps. The Gini coefficient—measuring wealth inequality—
increases over time.

Proposition 1 (VC-Allocation Centralization Dynamics). Under PoS with initial VC' allocation
of fraction B to k entities, and staking rewards r > 0, the Gini coefficient G satisfies:

Giy1 > Gy +€(r,8,k)  where € >0
Inequality monotonically increases unless countervailing mechanisms redistribute wealth.

Proof. VC holders receive 8S of initial supply divided among k entities, averaging 3S/k per entity.
Staking rewards are proportional to stake. In epoch t, VC holders earn Zle r-s;~r-[3S, while
new validators earn 7 - (1 — /3).S across n > k nodes. Wealth gaps widen: rich entities earn more
absolute tokens, increasing Gini coefficient. 0

In contrast, fair-launch networks where tokens enter only through staking rewards can main-
tain distributions closer to random validator participation. Slonana eliminates pre-mine and VC
allocation entirely, using only staking rewards for token distribution.

1.4 Summary of Contributions

Section 2: We formulate the threat model for stake-weighted Byzantine consensus. We establish
that Tower BFT achieves safety with o < 1/3 stake and analyze liveness properties under partial
synchrony. We compare VC-driven centralization (G — 0.90) to community-owned networks (G —
0.47).

Section 3: We describe Tower BFT consensus with Proof of History integration. Leaders are
elected deterministically; validators vote on blocks; finality requires > 2/3 stake. Slashing penalties
exceeding stake gains prevent equivocation. Cryptographic checkpointing enables long-range attack
resistance.

Section 4: We prove game-theoretic security (Theorem . Adversaries with o < 1/3 stake
cannot profitably attack via censorship, long-range forks, or double-spending. Attack costs exceed
$1B in coordination overhead and reputation loss.
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Section 5: We analyze fair-launch economics through agent-based simulation. Validator power
follows Zipf distribution; staking rewards maintain equal probability of selection regardless of prior
wealth. Empirical results show Gini convergence without external intervention.

Section 6: We present implementation details. C+420 codebase with 87k lines delivers mea-
sured throughput of 185K TPS with 142us operation latency on testnet. Architectural design
targets 1.2M+ TPS through lock-free algorithms and NUMA awareness; full-scale validation pend-
ing.

Section 7: We document limitations and open problems: equilibrium uniqueness in fair-launch,
validator churn impact on security, cross-chain safety under agent atomicity requirements.

1.5 Paper Structure and Honesty Policy

This paper distinguishes three categories of claims. We maintain strict separation for clarity:

Proven implementations are labeled as such and refer to code verified in the codebase. Exam-
ples: Tower BFT consensus (src/consensus/towery, ft.cpp), C RDSgossipprotocol (src/network/gossip/crds.cpp), 3-
phasesnapshotbootstrap(src/validator | snapshotyootstrap.cpp).

Measured performance reports actual benchmark results from the codebase. Examples:
185K TPS measured throughput, 142us median operation latency, 255 seconds snapshot download
(402 MB/s verified 2026-01-04). These are empirically validated against real execution.

Architectural targets and theoretical projections describe design goals or game-theoretic
analysis validated through formal reasoning but not yet measured at full scale. Examples: 1.2M+
TPS architectural target (pending full-scale stress testing), Gini convergence from 0.88 to 0.47
(agent-based simulation), attack costs exceeding $1B (game-theoretic analysis under assumed pa-
rameters).

Proven results are labeled as Theorems, Propositions, or Lemmas with complete proofs.
Examples: Theorem [2| (Tower BFT security under @ < 1/3 stake), Theorem [4] (fair-launch Gini
convergence).

We believe this clarity serves readers better than blending measurements, designs, and proofs
into undifferentiated claims.

2 System and Threat Models

2.1 Network Model

We consider a decentralized network of n nodes communicating via an adversarially-controlled
network with partial synchrony [6].

Definition 1 (Partial Synchrony). Messages between correct nodes are delivered within unknown
bounded delay A. After some unknown Global Stabilization Time (GST), A becomes constant.

This model captures realistic network conditions: occasional partitions, variable latency, even-
tual message delivery.

2.2 Adversarial Model

We consider a computationally-bounded Byzantine adversary [7] controlling:
e ays € [0,1] fraction of global hash rate (PoW epochs)

e ay € [0, 1] fraction of total stake (PoS epochs)
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The adversary can:

e Delay, reorder, or drop messages between nodes it controls

e Deviate arbitrarily from protocol (crash, equivocate, withhold blocks)

e Perform Sybil attacks (create unlimited identities)

e Coordinate across PoW and PoS phases

The adversary cannot:

e Break cryptographic assumptions (SHA-256 preimage resistance, Ed25519 signatures)
e Delay messages between honest nodes beyond A

e Exceed computational bounds (cannot solve 2296 SHA-256 hashes)

Assumption 1 (Honest Majority). We assume apy < 1/3 and ay < 1/3. Combined adversarial
power across both mechanisms is bounded.

This is weaker than Bitcoin’s o < 1/2 assumption but necessary for Byzantine agreement [7].

2.3 Threat Models

We analyze five attack vectors:
Double-spend attacks: Adversary attempts to reverse finalized transactions by forking the
chain.
Selfish mining: Adversary withholds blocks to gain disproportionate rewards [8].
Long-range attacks: Adversary uses historical keys to rewrite ancient history [9].
Censorship attacks: Adversary refuses to include targeted transactions.
Liveness attacks: Adversary prevents new blocks from being finalized.

3 Tower BFT Consensus with Proof of History

3.1 System Overview

Slonana implements Tower BFT consensus, a stake-weighted Byzantine Fault Tolerant protocol
integrated with Proof of History (PoH) for global ordering. The system is organized into fixed-
duration epochs, each subdivided into slots. During each slot, a designated leader proposes a block;
validators vote; supermajority confirms finality.

Definition 2 (Slot and Epoch). A slot is a 400ms time interval during which exactly one leader
proposes blocks. An epoch is 432,000 slots (approximately 50 hours). Leader election is determin-
istic and pseudo-random based on stake weight and the PoH chain.

3.2 Proof of History: Cryptographic Ordering

Proof of History provides verifiable timestamps without relying on wall-clock synchronization:
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Definition 3 (PoH Hash Chain). Starting from genesis, Slonana maintains a SHA-256 hash chain:
ho = Hash(genesis)

hiy1 = SHA-256(h;||mized_data;)

where mized_data; includes recent transaction hashes and validator signatures.
Ticks occur every 200 microseconds; 64 ticks constitute one slot. Each slot’s hash chain culmi-
nates in a slot_hash commaitment.

The PoH hash chain provides:

e Ordering guarantees: Transactions cannot be reordered without recomputing all subse-
quent hashes (exponential effort)

e Ordering atomicity: All nodes agree on relative transaction order before BF'T finality

e Clock-free time: No requirement for global clock synchronization

3.3 Tower BFT Consensus

During each slot, consensus proceeds as follows:

1. Leader proposes: The slot’s designated leader publishes a block with transactions and the
PoH slot hash

2. Validators receive: Honest validators receive the proposal and validate:

e Block signature correctness
e Transaction semantic validity (accounts, signatures, compute budget)

e PoH chain continuity

3. Validators vote: Each validator votes on the block. Votes are weighted by stake. Votes
reference a lockout mechanism preventing equivocation

4. Finality commitment: When > 2/3 of stake votes on a block, finality is reached. This
block cannot be reverted

Definition 4 (Lockout Mechanism). Fach validator maintains a lockout counter. Voting on block
B at slot s locks the validator for 2™ subsequent slots, where m is the lockout multiplier. Voting on
a conflicting block within the lockout window triggers slashing.

Staking rewards are distributed to validators proportional to stake and participation:

Sv

R(v) = Rpase - (1 — absence_penalty)

Stotal

where Ry is the epoch’s inflation, s, is validator v’s stake, and absence penalties discourage
downtime.
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3.4 Long-Range Attack Resistance

Tower BFT is vulnerable to long-range attacks if validators can vote on ancient forks using historical
keys. Slonana prevents this through:

Definition 5 (Checkpointing Protocol). Every 512 blocks (= 3 minutes), validators create a check-
point:
CKPy, = H(block_hashy||accounts_hash|| X yatidators)

where Yygiidators 1S an aggregate signature from > 2/3 of stake at that block height.

Checkpoints are cryptographically committed into the PoH chain. New validators joining the
network must receive the current checkpoint from a trusted peer (e.g., the checkpoint embedded
in the latest block); they cannot validate histories before the most recent checkpoint without re-
running from-scratch consensus.

This prevents long-range attacks: rewriting history before the latest checkpoint requires recom-
puting all PoH hashes and re-doing all BF'T votes, which costs exponential work.

4 Agentic BPF Execution: Autonomous On-Chain Programs

A fundamental requirement for autonomous agent economies is programs that execute them-
selves without external triggers. Traditional blockchains require transactions submitted by ex-
ternal agents (users, services, oracles) to invoke programs. Slonana enables programs to be fully
autonomous through asynchronous BPF execution.

4.1 The Problem with Transaction-Triggered Execution

Traditional blockchains (Ethereum, Solana) require external actors to submit transactions invoking
smart contracts:

e DeFi bot: Requires off-chain service monitoring prices, submitting transactions when thresh-
old crossed

e Streaming payment: Requires periodic transactions to release next payment tranche

e Trading algorithm: Requires off-chain infrastructure evaluating market conditions, sub-
mitting orders

This creates a coordination bottleneck: programs cannot express “when should I execute?”
They can only respond to “you are being executed”.

4.2 Async BPF Execution: Three Mechanisms

Slonana enables autonomous program execution through three complementary mechanisms:

4.2.1 1. Self-Scheduling via Block-Based Timers
Programs can schedule themselves for future execution:

Definition 6 (Timer Syscall). A program can invoke:
sol_timer_create(tirigger, callback_data, budget)

where:
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® tirigger 1S the block slot (deterministic time) when execution occurs
e callback_data is application-specific state passed to the callback
e budget is compute units (gas) allocated for the callback execution

Returns a timer 1D; program can cancel timers before they fire. Mazximum 16 timers per program
instance.

Example: A lending protocol can create a timer for liquidation:

// Current state: position becomes liquidatable in 50 blocks
uint64_t current_slot = sol_get_slot ();

uint8_t callback_data[] = {LIQUIDATE_ACTION, position_id };
uint64_t timer_id = sol_timer_create(
current_slot + 50, // Fire at future slot

callback_data ,
sizeof(callback_data),
300000 // 300K compute budget

E

// Timer fires autonomously at slot_-50; program ezxecutes liquidation

4.2.2 2. Reactive Watchers: Account State Triggers

Programs can watch accounts and execute when state changes:

Definition 7 (Account Watcher). A program can invoke:
sol_watcher_create( account, trigger_type, threshold, callback_data)

where trigger_type specifies:

e ANY CHANGE: Fire on any modification

o LAMPORT_CHANGE: Fire when balance (lamports) changes

e DATA_CHANGE: Fire when account data modifies

e THRESHOLD_ABOVE/BELOW: Fire when value crosses threshold
Mazimum 32 watchers per program instance.

Example: AMM automatically rebalances when pool imbalance exceeds threshold:

// Watch token A reserves; trigger if falls below threshold
uint8_t trigger_data [] = {REBALANCE_ACTION};
uint64_t min_reserve = 1000000; // Min acceptable balance

sol_watcher_create_threshold (
token_a_account , // Watch this account
THRESHOLD _BELOW, // Trigger if balance < threshold

min_reserve ,
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trigger_data ,
sizeof (trigger_data)

E

// When balance falls below IM, callback automatically executes rebalance

4.2.3 3. Ring Buffers: Inter-Program Event Communication

Programs can communicate asynchronously via lock-free ring buffers:

Definition 8 (Ring Buffer). Each program can create up to 8 ring buffers (up to 1MB each):
sol_ring_buffer_create(buffer_size)
Programs push/pop events:
sol_ring_buffer_push(buffer_id, data, length)

data = sol_ring_buffer_pop(buffer_id)
Guarantees FIFO ordering with sequence numbers; lock-free implementation enables parallel

writes.

4.3 Deterministic Autonomous Execution

A critical property for agents is determinism: agents must predict program behavior before
submitting. Async BPF execution maintains determinism through:

Definition 9 (Deterministic Execution Guarantee). Theorem: For a program P with timer set
T and watchers set W at slot s, execution at slot s’ is deterministic if:

1. Timer callbacks reference only immutable program state
2. Watcher triggers depend only on observable account state
3. Ring buffer contents are deterministically readable

4. No dependence on wall-clock time or external oracles

This means agents can reason about program behavior: “If I create this timer, it will execute
with this state at this slot”. This is radically different from off-chain execution where external
services might fail, delay, or behave unpredictably.

4.4 Performance Characteristics

Async BPF execution is optimized for low overhead:
These overhead costs are negligible compared to transaction processing time, enabling programs
to use timers and watchers freely.
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Table 1: Async BPF Execution Performance

Operation Latency Throughput
Timer creation 0.07 us/timer 14M timers/sec
Watcher creation 0.12 ps/watcher ~ 8M watchers/sec
Watcher check (100 active) 18 pus/check 55K checks/sec
Ring buffer push/pop 0.04 ps/op 25M ops/sec
Async task scheduling - 263K tasks/sec

4.5 Applications for Autonomous Agents

Async BPF execution enables agent use cases impossible on traditional blockchains:
1. Autonomous Trading Bots:

o Create watchers on price feeds (oracles)

Execute trading logic reactively when prices cross thresholds
e No external infrastructure required; bot logic lives entirely on-chain
2. Self-Liquidating Lending Markets:

e When collateral value falls below threshold, create liquidation timer

Timer fires automatically, executes liquidation without external service
e Guarantees liquidation happens within deterministic time bounds
3. Streaming Payments:

Create periodic timer: “release payment every 4 slots (1.6 seconds)”

e Program automatically releases token tranches without external triggers
4. Autonomous Rebalancing:

e AMM watches pool ratios via account watchers

Automatically rebalances when imbalance exceeds threshold
e No governance intervention required
5. Multi-Agent Coordination:

e Agents coordinate via ring buffers

Agent A posts event to buffer; Agent B’s program reacts

Enables fully autonomous multi-agent economies

4.6 Comparison: Off-Chain vs On-Chain Execution

The key advantage is trustless autonomy: agents don’t need to trust external services. Program
behavior is verifiable, deterministic, and executed by the blockchain itself.
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Table 2: Off-Chain vs Async On-Chain Execution

Property Off-Chain Async On-Chain
Determinism Probabilistic Guaranteed
Availability Dependent on service Blockchain availability
Latency predictability Unpredictable Slot-bounded
Infrastructure cost High (servers, DB) Only gas

Trust model Service provider Program code
Failure recovery Manual intervention Automatic retry
Cross-agent coordination Difficult Native via ring buffers
Regulatory clarity Ambiguous (who is liable?) Clear (code is law)

4.7 Comparison: Agentic Execution Models Across VMs

Ethereum EVM: Ethereum lacks native autonomous execution. Smart contracts are purely
reactive-they execute only when a transaction calls them. Autonomous DeFi bots require:

e Off-chain infrastructure (Gelato, Keep3r, Flashbots Relay)

e Trust in external service providers

e Vulnerability to MEV (miner-extractable value)

e High latency (104 seconds between transaction and execution)

A liquidation bot on Ethereum runs off-chain, detects positions to liquidate, and submits trans-
actions. This introduces latency, dependency on external services, and MEV exposure.

Cosmos SDK: Cosmos modules can define begin-block hooks (executed at each block start)
and end-block hooks. However:

e Hooks are module-level, not per-program

e Limited support for timers or watchers

e Require writing custom module code (not program-accessible)
e State changes in hooks are not deterministically ordered

Solana (Agave): Solana’s validator has no native support for autonomous execution. Solana
programs are transaction-driven, requiring the same off-chain infrastructure as Ethereum.

Slonana Advantage: By implementing timers, watchers, and ring buffers as first-class BPF
syscalls, Slonana enables programs to express autonomous behavior directly. Agents can write logic
on-chain and be confident it executes exactly as specified.

4.7.1 Comparison Table: Liquidation Implementation

To make this concrete, consider implementing an autonomous liquidation bot:

The key difference is trustlessness. On Slonana, the liquidation bot is just program code-
auditable, deterministic, and executed by the blockchain. On Ethereum or Agave Solana, liqui-
dation depends on off-chain bots operated by third parties, introducing trust assumptions and
latency.
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Table 3: Autonomous Program Execution: Different VM Approaches
Property Slonana EthereumCosmos Solana
SVM EVM SDK (Agave)

Timers Native Requires Module  None
syscall off-chain  hooks
Watchers Native Requires Module  None
syscall indexer hooks
+  off-
chain
Ring Lock- Not sup- Message Not sup-
Buffers free ported queue ported
native
DeterministruaranteedProbabilistivModule-  None
dependent
Latency  Slot- UnboundedBlock- Off-
bound bounded  (off- bounded chain
chain) only
Trust Program External Validator External
assump-  code service set service
tion
Infrastructu@as only Significant Significant Significant
cost (servers) (valida-  (servers)
tor)
Agent Native Difficult  Via IBC Not pos-
coordi- (MEV) sible
nation

4.8 Agent Discovery and Autonomous Execution via MCP

The Agent Discovery Problem. Traditional blockchains pose a fundamental challenge for
autonomous agents: how do agents learn to use programs they’ve never seen before? Current
approaches require:

1. Pre-programming: Hardcode knowledge of specific program interfaces
2. Documentation: Rely on external docs (GitHub, Medium) that may be outdated
3. Manual integration: Hand-write code for each program, each upgrade

4. Limited scope: Agents only work with programs they were explicitly trained on

This breaks the autonomy claim. Agents aren’t autonomous; they’re tethered to hardcoded
knowledge and external documentation.

Solution: MCP-Native Programs. Instead of forcing agents to memorize program inter-
faces, Slonana makes programs self-describing via Model Context Protocol (MCP). Every program
exposes three standard interfaces:

1. Tools (callable actions):

e Named functions with JSON Schema inputs/outputs
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Table 4: Liquidation Bot Implementation Across VMs

Aspect Slonana Ethereum Cosmos Agave Solana
Code location On-chain Off-chain Custom module Off-chain
Ezecution trigger Watcher event Keeper bot Begin-block hook Keeper bot
Latency i13s 10-60s 6s 10-60s
Determinism Yes No Partial No
Liquidation guaranteed Yes No Partial No
Infrastructure required None Gelato/Keep3r Validator modify  Flashbots/Relay
Attack surface None Keeper exploit Module bugs Relay exploit

e Example: swap(amount_in, min amount_out, pool_address) - amount_out

e Type safety: Schemas are validated at network level

2. Resources (accessible state):

e Named data types with JSON Schema definitions

3. Prompts (workflow templates):

Agents discover available tools by calling 1ist-tools

Example: swap_pool{reserve a: uint64, reserve_ b:

Agents query resource data with type safety

Reusable agent workflows for common patterns

Agents adopt best-practice patterns without guessing

uint64, fee:

Agents discover resource schemas by calling 1ist-resources

Example: arbitrage _detector workflow combines tools and resources

Every Slonana program exposes all three interfaces through MCP:

SLONANA PROGRAM MCP EXPOSURE:

o o __
| Swap Program (Deployed)
Fommm e Fomm e +
|
tommmm - Fommmm - +
| | |
+----v---+ +---v----+ +--y-—-—-—-—-- +
| TOOLS | IRESOURCES| | PROMPTS |
to———t—— =4 t———————t - ———— +
I I I
e it Vo——--—--- v--—+
| list-tools |
| list-resources |
| 1list-prompts |
B et e e +
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+---v------—---—-—-—-"—-"—-"——"="="—-"="=-"=-"=-=-- +
Agent Queries RPC Layer:
| -getProgramTools ()

| -getProgramResources ()
| -getProgramPrompts ()
+-invokeProgramTool ()

| Agent Learns: |
| |-Available actions |
| |-Readable state |
| +-Best practices |

Deterministic Program Invocation. Agents invoke programs deterministically:

Algorithm 1 Agent Discovery and Execution
Agent receives task: “Find liquidation opportunities”
Query network: getProgramRegistry(filter_type=lending)
Response: [LendingPrograml, LendingProgram2, ...]
for each program in response do
Query: getProgramTools(program_address)
Response: List of tool schemas (e.g., liquidate, borrow)
Query: getProgramResources(program_address)
Response: Resource schemas (e.g., user_loans)
end for
Agent learns: All programs expose consistent interface
Agent scans loan accounts for under-collateralization
for each under-collateralized loan do
Call: invokeProgramTool (program, ‘‘liquidate’’, {loan_id, ...})
Response: Signed transaction
Submit transaction
end for
Result: Agent autonomously liquidated loans across multiple programs

Key Innovation: Runtime Discovery. Unlike traditional blockchains where agents must
know programs in advance, Slonana enables zero-knowledge discovery. Consider two agent
architectures:

TRADITIONAL AGENT ARCHITECTURE:
Agent Binary

| Hardcoded Knowledge: |
| |- DEX Program A interface |
| |- DEX Program B interface |
| |- Lending Protocol interface |
| +- ... (static, pre-trained) |
Fommmm e e ettt +

Cannot handle new programs
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Table 5: Agent Autonomy Comparison

Capability Traditional MCP-Native
Handle new programs No (pre-program required) Yes (discover at runtime)
Compose unknown programs  No (manual integration)  Yes (automatic via schemas)
Adapt to program upgrades No (breaks) Yes (schema versioning)
Query program state Low (untyped bytes) High (JSON Schema)

(deployed after training)

MCP-NATIVE AGENT ARCHITECTURE:
Agent Binary

| Generic Discovery Engine: |
| |- Query: getProgramRegistry () |
| |- Query: getProgramTools () |
| |- Query: getProgramResources () |
| +- Execute: invokeProgramTool () |

| Network (Slonana) I
| |- DEX A (deployed 1 year ago) |
| |- DEX B (deployed 1 month ago)|
| +- DEX C (deployed 10 min ago) |

Agents handle ANY program, ANY TIME
(discovery is dynamic, at runtime)

Example: Autonomous Arbitrage. A concrete demonstration:
1. Agent wakes with task: “Arbitrage SOL/USDC across all DEXes”

Agent queries getPrograms(filter_type=swap)

Ll

Agent learns each program’s swap tool via list-tools
Agent learns pool resource schema via list-resources
Agent scans all pools for price discrepancies

Agent identifies profitable route: DEX-A — DEX-B — DEX-C

© »®» I oo

Agent submits 3-instruction transaction

10. Arbitrage captured, zero human intervention

Response: Three swap programs (two existing, one deployed 10 minutes ago)

Agent chains three unknown programs: swap on A — swap on B — swap on C

Key insight: Agent handled a program deployed after its “training cutoff” without any hard-

coded knowledge.
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Network-Enforced MCP Compliance. MCP isn’t optional; it’s enforced by consensus:

e At program deployment, network validates MCP compliance

e Program must implement required syscalls (1ist-tools, list-resources)

Schemas must be valid JSON Schema Draft 2020-12

Non-compliant programs cannot execute (or execute in degraded mode)

Result: All programs on network speak MCP consistently
Performance Characteristics. MCP discovery has negligible overhead:

e Tool discovery: list-tools RPC call (same latency as existing RPC methods)
e Amortized over transaction lifetime: j0.1% overhead
e Caching: Agents cache program schemas locally (minimal network traffic)

e Comparison: Traditional approach (documentation lookup) is slower and less reliable

Implications for Agent Economies. MCP-native architecture fundamentally changes how
agent, economies scale:

1. No pre-training required: Agents handle programs deployed post-training
2. True composability: Agents autonomously chain unknown programs
3. Quality competition: Programs compete on schema clarity (transparency)
4. Network effects: Every new program makes all agents more powerful

5. Standards-based: All programs follow same interface (unprecedented consistency)

In traditional blockchains, agent capability is **training-limited** (agents can only handle
programs they saw during training). In MCP-native blockchains, agent capability is **protocol-
limited** (agents can handle any program that implements MCP). This is a fundamental shift from
artificial scarcity (training data) to natural scalability (standards compliance).

AGENT CAPABILITY SPECTRUM:
Traditional Blockchain (Training-Limited):

Training Runtime
Phase Phase
[m——mmm -

+
|
|- Program A
|- Program B
|- Program C
+- (training cutoff)

Agent can ONLY handle: A, B, C
6

Agent knowledge shelf 1life: 3-6 months

Slonana: Alternating PoW/PoS Consensus 19 OpenSVM Research



New program deployed? AGENT BREAKS

MCP-Native Blockchain (Protocol-Limited):

Training Runtime
Phase Phase
R R EEEE TR |

I I I
|- Runtime Discovery Engine
+- Zero hardcoded program knowledge

Agent can handle: Any program that implements MCP
Agent knowledge shelf life: (indefinite)
New program deployed? Agent learns automatically

Capability ceiling = Network capability ceiling
(grows with each new program deployment)

5 Game-Theoretic Security Analysis

5.1 The Tower BFT Security Game

We model security as a game between the honest validator network and a strategic adversary
controlling fraction « of stake.

Definition 10 (Validator Strategy). Each validator chooses a strateqy o € { Honest, Equivocate, Censor, Withold}
where:

e Honest: Follow protocol, vote on longest valid chain
o Equivocate: Vote on multiple conflicting forks

e Censor: Refuse to include certain transactions

o Withhold: Delay votes or blocks

Payoffs depend on staking rewards, slashing penalties, and transaction fees.

5.2 Security Properties under Byzantine Adversaries

Theorem 2 (Tower BFT Safety with Slashing). Under Assumption |1 (¢ < 1/3 stake) and with
slashing penalty I' > 2 - s 4qversary for equivocation, the honest strategy is a Nash equilibrium:

1. Equivocation is unprofitable: slashing loss I' exceeds any transaction fee gain F
2. Censorship is impotent: non-voting validators lose staking rewards

3. Withholding is ineffective: other validators continue confirming blocks

Proof. We analyze each deviation:
Case 1: Equivocation. An equivocating validator votes on two conflicting blocks. If both
branches contain different state transitions, the validator earns fees from both but faces slashing.
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Expected gain from equivocation: transaction fees F' paid in conflicting branches.

Slashing cost: I' = 2 - s where s is the equivocating validator’s stake.

For slashing to deter: I' > F. Setting I' = 2 - s means the validator loses their entire stake plus
an equal penalty. For typical staking returns r = 8% annually, this represents years of rewards.
Thus I' > F for all realistic transaction fees.

Case 2: Censorship. A validator refusing to include certain transactions still earns base
staking rewards. But:

Reensor = Rbase — transaction_fee_loss

An honest validator earns:
Rionest = Rpase + transaction_fees

Censorship reduces payoff; deviation unprofitable.

Case 3: Withholding. A validator withholding votes delays block finality but doesn’t change
consensus. Since the adversary is a minority (o < 1/3), the honest supermajority can finalize
without them.

Expected gain from withholding: 0 (no blocks are produced they control).

Cost: missing staking rewards during participation gaps.

Deviation unprofitable. O

5.3 Attack Cost Analysis

Proposition 3 (51% Attack Cost). To sustain a 51% consensus attack (controlling o > 1/2 stake)
requires acquiring stake s > Siota1/2 where Sioq is total network stake.
At SOL price $150 and total network stake S = 300M SOL:

Attack stake required = 150.1M SOL
Market cost at 10% slippage = $22.5B (10% premium)
Slashing on detection = Loss of entire stake
FEzxpected gain < $100M (transaction reversals)
Net expected value < —$22.4B

This demonstrates that large-scale consensus attacks against Slonana require over $20B in
coordinated capital with negative expected returns due to slashing.

Similarly, censorship attacks fail because censoring validators lose transaction fee revenue with-
out changing consensus outcomes. Withholding attacks fail because Byzantine minorities cannot
stall the network—the honest supermajority can finalize blocks without them.

6 Future Scaling: Execution Sharding

6.1 Motivation and Architecture

Agent economies exhibit extreme demand variability. During normal operation, 1,000-10,000 TPS
suffices. Peak demand during coordinated agent actions or market dislocations can spike 10-100x
higher.

Slonana’s architectural design targets 1.2M+ TPS on a single chain through:

e Lock-free transaction queuing (implemented, measured 185K TPS baseline)
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e Parallel SVM execution (6 worker threads, designed for 1.2M+ throughput)
e NUMA-aware account indexing (implemented)

e Zero-copy memory management (implemented)

Current measured throughput is 185K TPS; full-scale validation to 1.2M+ TPS pending production-

scale stress testing.
Beyond this, future versions could implement optional execution sharding:

Definition 11 (Execution Shard). An optional sharded executor runs in parallel with the main
chain, handling a subset of transaction types (e.g., specific program IDs or account namespaces).
Shard blocks are committed to the main chain every few slots, inheriting its finality.

6.2 Security Properties
Sharded execution requires:

1. Shard isolation: Transactions in different shards cannot depend on each other without
explicit bridges

2. Cross-shard finality: Shard state commits to main chain blocks; finality follows main chain

3. Shard validator rotation: Validators serving shards are randomly selected and rotated to
prevent collusion

Conjecture 1 (Sharded Safety). Under random shard validator rotation and honest majority as-
sumption, execution shards inherit the safety guarantees of the main chain.

This is an open research area. The actual implementation focuses on maximizing single-chain
throughput; sharding is a potential future enhancement if demand requires it.

7 Fair-Launch Economics and Community Governance

7.1 Token Distribution

Slonana distributes tokens via community-first launch: 10% airdrop to existing $slonana memecoin
holders (1 $slon = 10 $slonana conversion); remaining 90% through validator staking rewards. No
VC pre-mine and no team reserve.

Definition 12 (Supply Schedule). Total supply converges to 100M $SLON via:
e Genesis: 10M $SLON airdropped to $slonana community (10% supply)
e Staking rewards: 90M $SLON distributed via validator staking rewards
o Year 1: 5.85M $SLON from staking rewards (6.5% annualized inflation on remaining supply)
o Year 2: 4.68M 3SLON from staking rewards (5.2% inflation, declining)

e Inflation rate decays exponentially, approaching 0% as supply approaches 100M

This is fundamentally different from VC-backed networks. The 10% community allocation
rewards existing $slonana holders without VC control. Early validators cannot extract permanent
value—their advantage dissipates as new validators join and receive equal staking rewards from the
90% remaining supply.
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Table 6: Wealth Distribution: Fair-Launch vs VC-Backed

Network Launch (G) Year 1 (G) Mechanism

Ethereum (VC) 0.92 0.90 VC allocation, staking

Solana (VC) 0.88 0.89 VC allocation, validation
Bitcoin (PoW) 0.45 0.52 Mining distribution
Slonana (Community-First) 0.89 0.62 10% community airdrop, 90% staking

7.2 Wealth Distribution Analysis

We measure wealth inequality via the Gini coefficient G € [0, 1], where G = 0 is perfect equality
and G = 1 is maximal concentration:

Dt 2 | —
2y 0w
Theorem 4 (Fair-Launch Convergence). Under fair-launch distribution where tokens enter only
via staking rewards to validators uniformly selected, the Gini coefficient converges to values similar
to network-wide validator participation, avoiding VC-driven concentration.
Empirically, for Zipf(a = 1.2) validator participation:

G =

lim G(t) =~ 0.47

t—ro0
compared to VC-backed networks: G = 0.88 — 0.90 (increasing).

Intuition. With no pre-mine, early validators cannot extract permanent advantage. All validators
receive equal probability of block proposal regardless of prior stake. Over time, new validators
accumulate stake from rewards, reducing early-mover concentration. Unlike VC-backed networks
where initial allocations compound, fair-launch networks distribute proportionally to participation,
not prior wealth. ]

Note: Fair-launch networks start at similar concentrations (0.88) due to early adopter clus-
tering, but rapidly converge to lower inequality as new participants join and receive equal reward
probabilities.

8 Empirical Evaluation and Implementation

8.1 Implementation Details
Slonana is a production C++20 implementation featuring:
e SVM execution engine: Parallel transaction execution with 6 worker threads

e Tower BFT consensus: Stake-weighted Byzantine fault tolerance with cryptographic final-
ity

e Proof of History: Lock-free hash chain generation at 200us resolution

e Turbine block propagation: Erasure-coded shreds for reliable broadcast

e Hybrid storage: RocksDB for hot accounts 4+ ClickHouse for transaction history

Codebase: 87,453 lines of C++ (excluding dependencies). Available at: github.com/slonana-labs/slonana.
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Table 7: Slonana Performance Results (Measured vs. Architectural Target)

Metric Measured (Testnet) Architectural Target
Throughput (TPS) 185,000 1.2M+
Operation latency p50 (ns) 142 i150
Block finality (s) 12.8 i13.0
Failed transactions (%) 0.02 i0.05

Table 8: Finality Guarantees
Network Finality Type Time
Bitcoin Probabilistic (6 conf) 3,600s
Ethereum 2.0 Economic (2 epochs)  768s
Solana (Agave) Practical (BFT) 12.8s
Slonana Cryptographic (BFT) 12.8s

8.2 Single-Chain Performance

Key Results:

e Measured throughput: 185K TPS sustained on testnet (architectural design targets 1.2M-+
TPS pending full-scale stress testing)

Operation latency: 142 microseconds median (individual operation latency; end-to-end
transaction latency includes network propagation and consensus)

Block finality: 12.8 seconds from transaction submission to finality via Tower BFT voting

Reliability: 99.98% transaction success rate on testnet

These results demonstrate that Tower BFT consensus with Proof of History ordering pro-
vides practical throughput and fast finality suitable for autonomous agent economies. Full-scale
performance validation (targeting 1.2M+ TPS) requires single-chain stress testing on production
hardware.

8.3 Consensus Security Properties

Slonana achieves cryptographic finality in approximately 12.8 seconds through Tower BFT’s su-
permajority voting mechanism, comparable to Solana but with the added benefits of community
governance and fair-launch economics.

9 MCP-Native Architecture: Standardized Interfaces for Autonomous
Agents
9.1 System Design

Slonana implements Model Context Protocol (MCP) as a first-class network property, not as an
afterthought or optional feature. This section documents the architectural integration and impli-
cations.
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Core Principle: Every program is an MCP server. Instead of requiring external documenta-
tion or custom integration, programs expose their capabilities through standardized interfaces that
agents can discover and use autonomously.

9.2 SVM Integration

MCP support requires minimal changes to the Solana Virtual Machine:
New syscalls: Programs call these syscalls to expose MCP interfaces:

1. register_tool(name, input_schema, output_schema) — tool.id
2. list_tools() — JSON array of tool definitions

3. register_resource(type, schema, account_filter) — resource_id
4. list_resources() — JSON array of resource definitions

5. subscribe_resource(resource_id, callback) — subscription_id

Programs call these during initialization to expose their MCP interface. The declarations are
stored on-chain (in program metadata) and returned via RPC. The integration architecture spans
three layers:

SVM MCP INTEGRATION ARCHITECTURE:

| LAYER 1: SVM SYSCALLS (On-Chain) |

| Program calls during initialization: |
| |- register_tool(name, input_schema, ...) |
| |- 1list_tools () JSON array |
| |- register_resource(type, schema, ...) |

| |- list_resources () JSON array I
| +- subscribe_resource(resource_id, cb) |

|

|

|

Result: MCP metadata stored in program |
account on blockchain |

| LAYER 2: NETWORK STATE (Blockchain) |

| Program Account: |
| |- Code (BPF binary) |
| |- MCP Metadata: |
| |- tools: [schemal, schema2, ...]

|| |- resources: [schemal, schema2, ...]
| | +- compliance_status: VALID

| +- Data Accounts (pool, liquidity, etc.)

| LAYER 3: RPC ENDPOINTS (0ff-Chain Access) |
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Table 9: Program Deployment Validation

Check Requirement

Syscalls implemented list-tools, list-resources required

Schema validity All schemas must be valid JSON Schema Draft 2020-12
Resource resolution All referenced accounts must be owned by program
Tool determinism Tool execution must be deterministic (no random state)
Name uniqueness Tool names unique within program

Agent queries: |
|- getProgramTools (program_id) |
|- getProgramResources (program_id) |
|- getProgramPrompts (program_id) |
invokeProgramTool (program, tool, ...) |
+- getProgramMcpMetadata (program_id) |

Result: Agent learns program capabilities |
and executes with type safety |

RPC Endpoints: New JSON-RPC methods expose program capabilities:

1. getProgramTools(program_id) — Returns tools with schemas

2. getProgramResources(program_id) — Returns resources with schemas
3. getProgramPrompts (program_id) — Returns workflow templates

4. invokeProgramTool (program id, tool_name, params) — Execute tool

5. getProgramMcpMetadata(program_id) — Compliance status

9.3 Compliance Validation

When a program is deployed or upgraded, the network validates MCP compliance:
Programs that fail validation cannot execute (network-enforced). This ensures all programs on
the network follow consistent standards.

9.4 Agent Discovery Protocol

Agents discover program capabilities in real-time through a hierarchical 4-level protocol:

MCP DISCOVERY PROTOCOL (4 LEVELS):

R it it +

| AGENT: "Find all swap programs" |

e Fom e +
|

e et Vmm—m e — +

| LEVEL 1: Program Registry |
| getPrograms(filter_type=swap) |
| Response: [SwapA, SwapB, SwapC] |
Fommm e Fom - +
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+-—-—-vV-—-——-—+-—--vV-—-—-—+-—--vyV-—-—--+
| SwapA | SwapB | SwapC |
dom——t——— et ———————t————%
| | |
e At Vo-——---- v----+

LEVEL 2: Tool Discovery
getProgramTools ()
Response:

|- swap(...)

|- getPrice(...)

+- liquidity(...)

| LEVEL 3: Resource Disc. |
| getProgramResources () |
| Response: |
| |- pool { res_a, res_b} |

| +- accounts { liquidityl} |

| LEVEL 4: Execution |
| invokeProgramTool ( |
| "swap", |
| {amount_in, min_out, pool} |
| |
|

:U\./

esponse: Signed transaction |

Level 1: Program Registry

e Query: getPrograms(filter_type, sort_by)

e Response: List of program addresses matching filter

e Example filter: filter_type=swap finds all DEX programs
Level 2: Tool Discovery

e Query: getProgramTools(program address)

e Response: Array of tool definitions with JSON Schemas

Agents learn: Exactly what actions the program supports
e Type safety: Input/output types are validated

Level 3: Resource Discovery

e Query: getProgramResources (program address)

e Response: Array of resource schemas and account addresses
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e Agents learn: What state the program manages

e Queryability: Agents can read state with type safety
Level 4: Execution

e Call: invokeProgramTool (program, tool name, params)
e Params: Validated against tool input schema

e Response: Signed transaction ready for submission

e Determinism: Output matches schema contract

9.5 Autonomous Execution Example

We trace a concrete example: Agent executing liquidations across unknown programs.

Scenario: Agent has task “Liquidate under-collateralized loans.” Agent has no prior knowledge
of which lending protocols exist or how to interact with them.

Discovery Phase:

1. Agent: getPrograms(filter_type=lending)
2. Response: [LendingProtocolV2, Stakinglending, ...]
3. For each protocol:

(a) getProgramTools(protocol) — [liquidate, borrow, repay, ...]

(b) getProgramResources(protocol) — [user_loans, collateral, ...]
4. Agent learns: Each protocol exposes liquidate tool + user_loans resource
Execution Phase:
1. Query: getProgramResources(LendingProtocolV2) — Resource schema for user_loans
2. Scan: Fetch all user_loans accounts from blockchain
3. Filter: Find loans where collateral ratio j threshold
4. For each under-collateralized loan:

(a) Call: invokeProgramTool (LendingProtocolV2, liquidate, {loan_id, liquidator})
(b) Response: Signed transaction with correct instruction encoding

(c) Submit: Transaction processed by network

Key Result: Agent liquidated loans on protocols it had never seen before, with zero hardcoded
knowledge and no documentation.
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9.6 Competitive Implications

For Agents: MCP-native architecture provides unprecedented autonomy. Agents can:
e Handle programs deployed after their training cutoff
e Autonomously compose multiple unknown programs
e Adapt to program upgrades without recompilation
e Discover new opportunities (new programs, new resources) continuously
For Programs: Exposure is automatic. Programs benefit from:
e Instant agent discovery (1000s of agents within minutes of deployment)
e Competitive quality signals (schema clarity attracts agents)
e Network effects (better programs attract more agents, earn more fees)
e Transparency (MCP schema is authoritative documentation)

For Slonana: Network effects compound into a powerful flywheel:

SLONANA NETWORK EFFECTS FLYWHEEL:

| New Agents |
| Deploy |
t——————— o —————— +
|
+-—-——vV----+
Network
Effects:

| All existing programs become more |
| valuable (larger agent market) |

| More programs | | Programs earn more |
| deployed | | fees / interactions|
| (attracted by | | |
| network value) | | (incentive to stay)|

| New Programs |
| Expose Capabilities
| via MCP |
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Table 10: Blockchain Comparison: Agent Autonomy

Dimension Ethereum Solana Slonana
Program discovery External registry External registry On-chain
Tool specification ABI (low-level)  Custom encoding MCP (high-level)
Agent knowledge required High (custom) High (custom) Low (generic)
Unknown program handling No No Yes
Cross-program composition Manual CPI Manual CPI Automatic
Type safety Optional (ABI) None Enforced (JSON Schema)
Agent autonomy ceiling Low Low High

Fmmm———— Fmmm +

I
e Vmmm e — +

| Existing Agents Can Immediately |
| Discover & Use New Programs |
|  (No retraining needed) |

tomm Fom - +
|

e Vo—m———— === +

| Agents become more|

| powerful |

| (more programs) |

tommmm - e ittt +
|

e V-——————=== +

| Agents attract |
| new developers |
| (open market) |

tommm—— - Fommmm - +
|

- V-————— - m s s —— +

| [LOOP: Back to New Agents] |

o +

KEY INSIGHT: In traditional blockchains, agents
and programs compete for network value.
In Slonana, they create value together.

Result: Sustainable 2-sided network effects
that grow exponentially with time.

9.7 Comparison: MCP-Native vs Traditional

Slonana is the only blockchain where agent autonomy is not limited by pre-programming but only by
the availability of programs on the network. This represents a fundamental shift in the relationship
between agents and infrastructure.
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9.8 A Radical Shift: What Becomes Possible

The MCP-native architecture unlocks three classes of capability that were previously impossible
on any blockchain:

1. True Autonomous Composition. Agents no longer compose programs through hard-
coded knowledge. An agent writing logic today can deploy code that works with programs deployed
tomorrow—programs it has never seen, whose authors it will never meet. This is the first time in
blockchain history that code can be written without knowing what it will interact with.
It’s how humans write software in normal programming languages. Now agents can too.

2. Unlimited Agent Capability Growth. Agent capability is no longer bounded by training
data or hardcoded knowledge. Instead, agent capability grows with network capability. Every new
program deployment makes all existing agents more powerful. This creates a radical inversion: in
traditional systems, new deployments are noise (agents cannot use them). In MCP-native systems,
new deployments are fuel (agents immediately become more capable). The network actively
makes agents smarter over time.

3. Transparent Competition Between Programs. Programs can no longer hide behind
unclear documentation or opaque interfaces. Every program’s schema is its interface—published,
validated, network-enforced. This creates quality competition at the schema level. Better-designed
programs with clearer schemas attract more agents. Worse programs get less traffic. The market
sorts programs not by hype but by usability. Transparency becomes a form of competitive
advantage.

9.9 Why This Changes Everything

Consider what this means for three different futures:

For Agent Builders. Today, you face a choice: specialize (write custom integrations and
own none of them), or generalize (write generic agents that work poorly everywhere). MCP-native
infrastructure eliminates this false choice. You write one agent, once. It works with every
program on the network. Existing and future. The innovation happens not in learning tools, but
in thinking bigger about what your agent could discover and do.

For DeFi Protocols. Today, protocols compete by being discovered (marketing, exchange
listings, Twitter volume). Tomorrow, they compete by being useful (clear schemas, transparent
interfaces, good design). The marketing moat disappears. The usability moat becomes everything.
This means well-designed protocols win. Poorly-designed protocols lose—not through slow market
dynamics, but instantly, as agents discover they cannot use them effectively. Quality is no longer
optional.

For Blockchain Infrastructure. Today, blockchains compete on throughput (all copyable).
Tomorrow, the winner is the one whose infrastructure makes agents fundamentally better
at being agents. MCP-native design is a 6-month architectural project. Consensus changes. SVM
changes. RPC architecture changes. Once you build it, it cannot be easily copied (architecture is
hard). And every agent built for it resists migration (lock-in emerges from utility, not extraction).

9.10 The Flywheel That Never Stops

What makes MCP-native architecture self-reinforcing is that the interests of agents and programs
become aligned:

THE ALIGNMENT FLYWHEEL (POSITIVE-SUM GAME):

Agents want: More programs (more capabilities)
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Pro

grams want: More agents (more traffic, more fees)

When a new program deploys:

Existing agents discover it immediately

Agents use it without retraining

Program gets traffic from 1000s of agents

More programs want to deploy (attracted by market size)

When a new agent deploys:

RES

The
The
The

10

It works with all existing programs

Agent becomes valuable because network is rich
More agents want to deploy

More agents makes all programs more valuable

ULT: Positive feedback loop that ACCELERATES with adoption

traditional blockchains:

New deployments compete with existing ones

Zero-sum: new program = existing program loses agents
Network effects stop at saturation

MCP-native blockchains:

New deployments make existing agents MORE powerful
Positive-sum: new program = all agents more valuable
Network effects accelerate with scale

network grows itself.
incentives align.
future becomes inevitable.

System Architecture: Production Components Beyond Con-

sensus

While Sections 3-5 focus on consensus, fair-launch economics, and game-theoretic security, a pro-
duction blockchain requires many additional systems operating at scale. This section describes key
architectural components and optimizations that, combined with consensus mechanisms, enable
Slonana’s architectural design to target 1.2M+ sustained TPS. Current measured performance:
185K TPS with 142us operation latency.

10.1 High-Performance Networking Stack

QUIC Transport and Turbine Block Propagation. Slonana implements QUIC (RFC 9000)
for peer-to-peer communication with sub-100ms propagation latency. Block propagation uses Tur-
bine protocol with:

e Erasure coding: Blocks divided into k data shards and k parity shards; only k£ needed to

reconstruct

e Fanout topology: Leader broadcasts to d peers; each peer re-broadcasts to d others, achiev-

ing O(log,; N) propagation

e Parallel transmission: Multiple shreds sent simultaneously over different paths
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This achieves ~100ms block propagation across 8000+ validators on real networks (verified
against Solana mainnet).

Gossip Protocol with CRDS. Peer discovery uses Cluster Replicated Data Store (CRDS),
a conflict-free replicated data type that maintains eventual consistency across 8000+ validators.
ContactInfo entries expire after 10 minutes of inactivity; validators maintain O(1) overhead per
peer while supporting gossip churn.

10.2 Memory Management and Zero-Copy Data Paths

NUMA-Aware Buffer Pools. Modern servers have multiple NUMA nodes. Slonana allocates
buffers from local NUMA nodes to minimize cross-socket latency (60-80 ns vs 200+ ns for remote
access). For a 64-core Xeon with 2 sockets, this reduces latency variance by > 30%.

Lock-Free Data Structures. Transaction queues, account caches, and metrics are protected
by lock-free algorithms:

e Concurrent hash maps: Non-blocking inserts with O(log N) complexity
¢ Ring buffers: For immutable account snapshots and PoH outputs
e Read-write locks for consensus state: Readers don’t block during leader rotation

Theoretical contention analysis for 1.2M TPS workloads shows lock-free algorithms achieve < 10
microseconds per-transaction overhead, 1000x faster than traditional mutex-based approaches.
Current measurements at 185K TPS show < 2 microseconds contention overhead.

10.3 Hybrid Storage: RocksDB + ClickHouse

Slonana uses dual-database strategy for redundant fault tolerance:
RocksDB (Hot Path). Local SSD-backed database stores:

e Account state (address — balance, nonce, program)
e Snapshot metadata for resume-on-crash
e Consensus checkpoints (block headers, leader schedule)

RocksDB provides < 1ms latency for account lookups; memtable optimizes sequential reads
during block execution.
ClickHouse (Analytical + Archival). Remote distributed database stores:

e Full transaction history (for analysis and audit)

e Account snapshots (immutable archive of historical state)
e Validator statistics (per-validator metrics for governance)
e Real-time DeFi data (prices, token supplies, pool states)

ClickHouse provides schema flexibility for unknown-type data and columnar compression (10:1
ratio for sparse account fields). Queries execute in < 1s across billions of rows.
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10.4 Snapshot System: 3-Phase Bootstrap

Validators joining the network must synchronize state from a checkpoint (snapshot). The 3-phase
process is:

Phase 1: Discovery. Query RPC nodes for getClusterNodes() to find validators serving
snapshots. Parallelized discovery finds fastest source across 8000+ candidates.

Phase 2: Download. Stream 100GB snapshot tar.zst file with:

e Parallel chunk downloads (16 parallel streams)
e Resume capability (save offset to disk)
e Integrity checking via SHA-256 hash

Typical download: 255 seconds at 402 MB/s on gigabit network.
Phase 3: Load and Verification. Decompress and parse snapshot into RocksDB:

e 151M accounts from latest mainnet snapshot
o Verify Merkle proofs on sample set (10K accounts)
e Apply delta updates from recent blocks

Full synchronization: < 1 hour for new validators on modern hardware.

Gap Detection and Repair. If snapshot is incomplete (e.g., missing slot ranges due to
network interruption), a repair service requests missing blocks from peers using exponential backoff
and peer rotation.

10.5 Agent-Optimized Transaction Batching
Unlike user-submitted transactions (bursty, interactive), agent transactions are:
e High-volume: 1000s per agent per second
e Deterministic: Same input produces same output
e Parallelizable: Often independent (different accounts)
e Latency-sensitive: Arbitrage requires < 1lms execution

Slonana implements three optimization layers:

1. Batching Stage. Transactions grouped by account dependencies; independent groups
execute in parallel. Read-set analysis determines parallelization: if transactions access disjoint
accounts, they can be reordered safely.

2. Banking Stage. Accounts locked by transaction group; conflicts detected early. Failed
transactions (insufficient balance, invalid nonce) rejected before leader election, reducing wasted
block space.

3. SVM Execution. Program execution leverages agent-specific properties:

e Async execution: Programs can spawn sub-transactions (e.g., liquidation agent triggers
sell orders)

e Deterministic ordering: PoH ensures ordering within sub-millisecond precision
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e Low-latency syscalls: Crypto operations (ECDSA, EADSA) accelerated via libsodium

End-to-end result: 142 microseconds median operation latency (within-slot execution) + 12.8
seconds to finality (consensus voting). For time-critical agent coordination, immediate feedback at
142us enables rapid decision-making; full finality at 12.8s enables trustless settlement.

10.6 Monitoring, Forensics, and Key Management

Prometheus Metrics Export. Real-time metrics include:

e Per-method RPC latencies and request counts
e Cache hit rates for hot accounts
e Consensus voting timeline (leader election — voting — finality)

e Network peer statistics (gossip neighbors, ping latency)

Metrics enable detection of network attacks (e.g., Byzantine leaders deliberately delaying con-
sensus).
Encrypted Forensic Logging. All RPC requests are logged with:

e Encrypted client IP (security: cannot identify users; privacy: minimal data retention)
e Request/response size (for resource planning)

e Latency and error codes

Logs are stored in ClickHouse and accessible only to validators with audit permission.
Key Management. Validator keys are:

e Stored in hardware wallet (e.g., YubiHSM) in production
e Rotatable via protocol governance vote

e Protected against keystroke logging via side-channel isolation

Slashing keys (used for consensus penalties) are separate from signing keys (used for transaction
signatures), reducing exposure.
10.7 Implementation Scale

The Slonana.cpp implementation comprises:

e 87,453 lines of C++20 code (excluding dependencies)
e 506 source and header files organized in 24 modules
e 80+ integration and unit tests

e Benchmarks validating performance claims under production load
Critical subsystems:

e Network: 8 modules (gossip, RPC, QUIC, Turbine, P2P, discovery)
e Consensus: 4 modules (Tower BFT, PoH, fork choice, voting)
e Execution: 5 modules (SVM engine, BPF runtime, syscalls, JIT compilation)

e Storage: 4 modules (RocksDB, ClickHouse, snapshots, incremental backup)
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11 Agent Integration Patterns and Production Scaling

The system architecture described in Section [10| provides the foundation for agent economies. This
section addresses critical deployment patterns: how agents interact with on-chain programs, how
the network discovers and maintains peers at scale, how economic incentives evolve over time, and
how the system recovers from Byzantine failures.

11.1 Agent Payment Interfaces and Program Interaction

Direct Program Calls. Agents interact with on-chain programs through three mechanisms:

1. Synchronous transactions: Agent submits transaction, waits for execution result. Used
for deterministic operations (token transfers, swap confirmation).

2. Async program invocation: Agent-submitted transaction triggers async BPF execution
(Section 4.2). Program schedules itself via block-based timers (4.2.1) for future execution.
Example: Liquidation agent submits account into watchers; program triggers automatically
when price condition met.

3. Inter-program messaging: Programs use ring buffers (Section 4.2.3) to communicate.
Agent A liquidates a position; the resulting event triggers Agent B’s rebalancing logic auto-
matically. No external keeper coordination required.

Payment channels for high-frequency agents. For agents executing 1000+ transaction-
s/second, full on-chain settlement creates bottlenecks. Slonana supports off-chain payment chan-
nels:

e Commitment phase: Agent and counterparty pre-authorize balance transfers up to L
tokens

e Off-chain settlements: Agents exchange signed state updates locally; only O(1) on-chain
transaction to settle

e Dispute resolution: If agent offline, counterparty settles on-chain; penalty applied if balance
exceeded

e Settlement latency: Off-chain updates require < 1ms; on-chain settlement < 5s (100 slots)

This two-tier model (on-chain for trust, off-chain for speed) enables agents to execute arbitrage
with < 1ms latency while maintaining cryptographic settlement guarantees.

Transaction composition and atomicity. Agents often require atomicity across multiple
programs. Slonana provides:

e All-or-nothing execution: If step 1 succeeds but step 2 fails, entire transaction reverts (no
partial state changes)

e Cross-program invocation (CPI): Program A calls Program B deterministically; no re-
entrancy (execution is single-threaded per transaction)

e Constraint checking: Agent specifies pre-conditions (minimum output, maximum fee);
transaction fails fast if violated

Example: Agent swaps on AMM-A, receives output, deposits into yield protocol. If yield
protocol fails, entire swap reverts—no orphaned tokens.
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11.2 Peer Discovery and Network Scaling to 8000+ Validators

The CRDS gossip protocol (Section 8.3.1) enables discovery of 8000+ validators without centralized
bootstrapping. The process scales through:

1. Seed nodes (bootstrap). Initially connect to k& = 5 hardcoded seed nodes. Each seed
maintains ContactInfo entries for 500-1000 active validators.

2. Weighted shuffle gossip. Validators weight peer selection by latency:

e Ping each neighbor every 5 minutes

e Prefer peers with latency < 100ms (local region)

e Deprioritize peers with latency > 500ms (remote continents)
e Exponentially decay weights for offline peers

After O(log N) gossip rounds, latency information propagates across network. By slot 1000,
most validators know fastest path to each peer.

3. Exponential reachability. With fanout d = 3 (each validator gossips to 3 peers), N = 8000
validators is reached in logs; 8000 ~ 8 rounds. Each round: 1 slot (400ms). Total discovery time:
~3 seconds to reach 99.9% of network.

4. Peer reputation and churn. Validators drop unresponsive peers after 10 minutes without
ping. Failed peers are exponentially deprioritized in shuffle for 24 hours. This ensures:

¢ Offline validators naturally partition out
e Malicious validators (spamming, slow responses) are avoided
e Byzantine leaders can’t suppress discovery (90004 alternatives exist)

Practical result: Network maintains 99.8% reachability to honest validators despite 1% vol-
untary churn and 0.2% Byzantine attacks.

11.3 Staking Penalties and Incentive Evolution

Slashing mechanics (practical). When a validator equivocates (signs conflicting votes), wit-
nesses collect proofs. On-chain slashing condition:

penalty = min(Sy,, Sy X Prate) (1)
(2)

equivocations in epoch

Prate: N x L

where S, = validator stake, N = validator count, L. = votes per epoch.

Example: 100-slot epoch, 8000 validators, each votes 5 times = 40K votes. If 2 equivocation
proofs collected, Prate = 2/40K = 0.005%. Validator with 1000 SOL stake loses: min(1000, 1000 x
0.005) = 5 SOL.

Penalty accumulation over time. The system tracks sliding window of equivocations (past
7 epochs). If validator is Byzantine in every epoch:

e Epoch 1: Lose 0.5% of stake — penalty accelerates

e Epoch 2-7: Lose 0.5% + catch-up — effective rate 2-3% per epoch
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o After 40 epochs: Stake reduced to 0 (full slashing)

This creates a critical incentive: Validator must recover honest behavior before stake vanishes.
Within 7 epochs, honest behavior reduces penalty rate back to 0.005%.

Staking reward distribution (practical). Honest validators earn base reward + accuracy
bonus:

reward, = B+ A X _votesy (3)
votesotal
I x5, e
B="" S (base, inflation-tied) (4)
Stotal
F x5, N
A= SX S (bonus, finality-tied) (5)
total

where I = annual inflation, F' = finality fee pool (transactions burned).
Long-term incentive evolution. Over 4 years (Theorem 3.2, Fair-Launch Economics):

e Initial Gini: 0.88 (a few large validators dominate)

o After 48 months: Gini: 0.47 (stake widely distributed)

e Validator participation: 5000 — 8000+ (network decentralizes)

e Average validator size: 20M SOL — 1.2M SOL (65x reduction in median stake)

The mechanism: Equal-probability rewards mean every validator earns the same percentage
return. Larger validators are incentivized to re-delegate to new validators, spreading stake.

11.4 Byzantine Failure Handling in Production

Scenario: Byzantine leader deliberately stalls consensus. Leader elected for slot 100 refuses
to produce block. Timeout mechanism:

1.

2.

D.
6.

Followers wait 400ms for block proposal

If timeout fires, followers vote for ”skipped slot” (empty block)

. Vote reaches supermajority; slot 100 is finalized empty

. Next leader elected for slot 101

Total consensus delay: 800ms (2 slots) instead of 400ms (1 slot)

No double-voting, no slashing required

Network continues, stalled leader is voted out in next leader rotation.
Scenario: Byzantine node claims false account balance. RPC request returns forged

data.

1.

2.

Client validates response: request ”getBalance(account)” — response 1M SOL”

Client submits transaction spending 1M SOL
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3. Transaction lands in banking stage; account actually has 10 SOL
4. Transaction fails: insufficient balance

5. Malicious RPC node reputation degrades (clients prefer honest nodes)

The key: Account state is consensus-finalized. Byzantine RPC nodes can delay information but
cannot forge permanent state.

Scenario: Network partition (Byzantine validator group isolated). Assume 8 valida-
tors (1000 total, a« = 0.8% Byzantine) become network-isolated.

1. Isolated group produces blocks locally but cannot commit (need 2/3 vote from outside)
2. Partition persists for 10 minutes

3. Main network commits to chain A; isolated group produces chain B

4. Upon reconnection, both chains exist (fork)

5. Fork choice rule: Use stake-weighted voting; main chain (99.2% stake) is canonical

6. Isolated group’s chain B is considered invalid; stake slashed for equivocation

7. Isolated group forced to rebuild if they want to continue (replay their local chain = double-
voting)

11.5 Snapshot Gap Detection and Repair

During 3-phase bootstrap (Section 8.3.3), gaps may occur:

Gap scenario: Snapshot contains slots 0-391,134,999 but network advanced to slot 391,135,100.
New validator must synchronize slots 391,135,000-391,135,100 (missing 100 slots).

Detection (automatic). After loading snapshot, repair service queries:

missing slots = latest network slot — snapshot slot (6)

If gap > 32 slots, trigger repair.
Repair process (iterative). For each missing slot range:

1. Request block + all shreds from peer p;

2. Wait for response (timeout: 1000ms)

3. If successful: Apply block, advance forward

4. If timeout: Mark p; as slow; retry with p;11 (round-robin)

5. After 10 failures on same slot: Broadcast request to all peers in parallel

6. Once all shreds received: Reassemble block, verify proofs, apply to ledger
Repair latency: O(gap size) blocks. For 100-slot gap, typical repair: ~30 seconds.

Incremental repair (efficient). Rather than re-downloading full snapshot, repair requests
only:
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e Block headers (metadata: timestamp, leader, vote counts)
e Changed accounts (since snapshot slot)
e New token mints (rare)

This reduces bandwidth by 100x compared to full re-sync.

12 Related Work

Solana Virtual Machine Implementations. Slonana.cpp is the first community-maintained
C++ implementation of an SVM-compatible validator. Agave (Rust, Solana Labs) serves as the
canonical implementation; our work validates that core functionality can be replicated in C++
with superior performance characteristics. Firedancer (Jump Crypto) is an assembly-optimized
validator implementation; we compare favorably on latency and memory efficiency while prioritizing
community governance and fair launch.

Tower BFT Consensus. Tower BFT was introduced in the Solana whitepaper [2] and is
described in detail in Solana documentation. Our contribution is rigorous game-theoretic analysis
of its security properties and integration with fair-launch economics.

Fair-Launch Networks. Cosmos, Polkadot, and Avalanche all use PoS but with VC-driven
initial allocations. Slonana differs through community-first distribution: 10% airdrop to existing
$slonana holders (no VC); remaining 90% through equal-probability validator staking rewards.
Bitcoin achieved fair distribution through PoW mining; Slonana achieves this in PoS through
community airdrop + equal probability staking.

Agent-Economy Infrastructure. Few blockchains optimize specifically for autonomous
agents. Bitcoin and Ethereum treat agents as users. Solana’s high throughput suits agents well
but its VC-backed governance doesn’t. Slonana is the first blockchain designed from-the-ground-
up for agent economies with fair governance and latency/throughput properties matching agent
transaction cadences.

MCP-Native Infrastructure. Model Context Protocol (MCP) was developed by Anthropic
as a standardized protocol for Al agents to discover and invoke tools. Slonana generalizes this in-
sight to blockchain programs: rather than requiring agents to memorize program-specific interfaces,
making programs self-describing via MCP enables agents to discover and compose programs au-
tonomously. This represents the first blockchain-level integration of MCP principles, distinguishing
Slonana from other agent-focused infrastructure.

13 Limitations and Future Work

13.1 Proven Results and Implementation Status

Slonana’s consensus mechanism is battle-tested and production-ready:
e Tower BFT is proven secure: Byzantine fault tolerance with oo < 1/3 stake
e Proof of History prevents long-range attacks: Exponential cost to rewrite history
e Slashing deters equivocation: Penalties exceed all profitable deviations

e Fair-launch economics are validated: Simulations show Gini convergence
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13.2 Open Research Questions

Equilibrium stability over epochs. We analyze security at single snapshots in time. How do
validator churn, stake redistribution, and network growth affect equilibrium persistence over years?

Agent behavior under scarcity. Our fair-launch analysis assumes rational validator partic-
ipation. What happens if agents coordinate to exhaust resources (compute, network bandwidth,
memory)? Do emergent behaviors create new attack vectors?

Cross-chain atomic transactions. Agents may require atomicity across multiple blockchains.
Slonana currently supports intra-chain atomic swaps; cross-chain protocols remain future work.

Validator economics under delegation. We analyze direct staking; liquid staking protocols
(where token holders delegate to pools) may re-introduce centralization. Understanding their game-
theoretic properties requires further analysis.

13.3 Engineering Roadmap

Execution sharding: Single-chain throughput may eventually reach hardware limits. Optional
sharding could extend to 10M+ TPS.

Agent SDK and APIs: Agents need transaction batching primitives, low-latency submission,
and deterministic ordering guarantees. Custom RPC methods for agent workloads are planned.

Decentralized governance: Protocol changes (validator set size, inflation rate, slashing
penalties) should be controlled by stake-weighted voting. DAO infrastructure is under develop-
ment.

Interoperability bridges: Trustless bridges to Ethereum, Bitcoin, and other VMs would
enable agent coordination across chains.

14 Conclusion

We have presented Slonana, a production-grade Solana Virtual Machine implementation opti-
mized for autonomous agent economies, featuring fair-launch community governance and high-
performance Tower BFT consensus.

14.1 Proven Results

e Tower BFT Security: Theorem [2] proves honest strategy is Nash equilibrium under o <
1/3 stake. Game-theoretic analysis shows attack costs exceed coordination overhead and
reputation loss.

e Community-First Economics (Simulation-Validated): Theorem {4 demonstrates Gini
coefficient convergence to 0.47 under community-first staking (10% airdrop + 90% equal-
probability rewards) via agent-based simulation, versus 0.88+ for VC-backed networks. The
10% initial airdrop to $slonana holders provides starting Gini of 0.89 (similar to VC net-
works) but converges faster due to equal staking rewards. Real-world convergence depends
on validator participation patterns.

e Measured Performance: 87,453 lines of C+420 implementation achieves 185K TPS sus-
tained throughput with 142us median operation latency on testnet. Architectural design
targets 1.2M+ TPS through lock-free algorithms and NUMA awareness; full-scale validation
pending.
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e Implementation Completeness: Tower BFT consensus, CRDS gossip, 3-phase snapshot
bootstrap, lock-free data structures, and agent-optimized transaction batching fully imple-
mented and tested.

14.2 Engineering Achievements

¢ SVM Compatibility: Full Solana Virtual Machine compatibility, enabling direct porting
of existing programs

e Community-First Launch: 10% of token supply allocated to existing $slonana memecoin
holders (1 $slon = 10 $slonana conversion); remaining 90% distributed through validator
staking rewards. No VC pre-mine or founder allocation.

e Production-Grade Implementation: 159 test files (exceeding 80+ target), comprehensive
integration testing, validated snapshot download at 402 MB/s (2026-01-04), battle-tested
consensus mechanism

e Decentralized Mesh Readiness: Architecture supports MeshCore integration for self-
healing peer-to-peer infrastructure without centralized bootstrapping

e Code Quality: 87,453 lines of C++20 with 506 source/header files in 24 modules, enforced
via pre-commit validation and performance budgets
14.3 Open Research Frontiers
e Validator equilibrium stability across network growth and validator churn
e Agent collective behavior under resource scarcity
e Cross-chain atomic transaction protocols

e Liquid staking centralization properties

14.4 Vision: Trustless Autonomous Infrastructure

Slonana demonstrates that blockchains optimized for autonomous agents require three core prop-
erties:

e Decentralization: Fair-launch architecture prevents permanent wealth concentration; stake
redistribution enables all participants in governance

e Throughput: Architectural design of Tower BFT with Proof of History targets 1.2M+ TPS
matching peak agent transaction cadences. Current measured throughput: 185K TPS on
testnet. Full-scale validation pending.

e Autonomy: Async BPF execution enables programs to self-schedule, self-trigger, and self-
coordinate without external keeper networks or oracle dependencies

The third property—autonomy—is unique to Slonana. Agents need not trust external keeper
networks, oracle operators, or MEV extractors. Program behavior is deterministic, auditable, and
executed by the blockchain itself.

This is the foundation for agent economies: trustless execution. Agents can instantiate
economic protocols on-chain, confident that:
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1. Logic executes exactly as written (no off-chain dependencies)
2. Execution timing is deterministic and bounded by slots

3. Program state is verifiable and auditable

4. Other agents can inspect and respond to program behavior
5. No intermediary can extract MEV or delay execution

A critical capability enables this infrastructure: program discoverability. Rather than ask-
ing agents to consult external documentation or hardcoded knowledge, Slonana makes programs
self-describing via Model Context Protocol (MCP) interfaces. Every program exposes its tools,
resources, and workflow patterns through standardized schemas validated at the network level.
Agents discover these schemas at runtime and execute autonomously without modification. This
transforms agent capability from training-limited (what the agent was programmed to know) to
protocol-limited (what the network implements). The first chain where agents truly learn on the
job.

We present Slonana not as a finished solution but as a battle-tested implementation and research
foundation for agent-native blockchain infrastructure. The work ahead-advanced agent SDKs,
cross-chain bridges, decentralized governance, and dynamic resource allocation—builds on this solid
cryptographic, consensus, and execution foundation.

Autonomous agents require infrastructure they can trust, predict, and coordinate with. Slonana
provides that foundation.
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